Combining sequence and network information to enhance protein–protein interaction prediction
نویسندگان
چکیده
منابع مشابه
COFACTOR: improved protein function prediction by combining structure, sequence and protein–protein interaction information
The COFACTOR web server is a unified platform for structure-based multiple-level protein function predictions. By structurally threading low-resolution structural models through the BioLiP library, the COFACTOR server infers three categories of protein functions including gene ontology, enzyme commission and ligand-binding sites from various analogous and homologous function templates. Here, we...
متن کاملCombining gene expression and interaction network data to improve kidney lesion score prediction
Current method of diagnosing kidney rejection based on histopathology of renal biopsies in form of lesion scores is error-prone. Researchers use gene expression microarrays in combination of machine learning to build better kidney rejection predictors. However the high dimensionality of data makes this task challenging and compels application of feature selection methods. We present a method fo...
متن کاملCombiMotif: A new algorithm for network motifs discovery in proteinprotein interaction networks
Discovering motifs in protein–protein interaction networks is becoming a current major challenge in computational biology, since the distribution of the number of network motifs can reveal significant systemic differences among species. However, this task can be computationally expensive because of the involvement of graph isomorphic detection. In this paper, we present a new algorithm (CombiMo...
متن کاملINGA: protein function prediction combining interaction networks, domain assignments and sequence similarity
Identifying protein functions can be useful for numerous applications in biology. The prediction of gene ontology (GO) functional terms from sequence remains however a challenging task, as shown by the recent CAFA experiments. Here we present INGA, a web server developed to predict protein function from a combination of three orthogonal approaches. Sequence similarity and domain architecture se...
متن کاملSplice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information.
Artificial neural networks have been combined with a rule based system to predict intron splice sites in the dicot plant Arabidopsis thaliana. A two step prediction scheme, where a global prediction of the coding potential regulates a cutoff level for a local prediction of splice sites, is refined by rules based on splice site confidence values, prediction scores, coding context and distances b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Bioinformatics
سال: 2020
ISSN: 1471-2105
DOI: 10.1186/s12859-020-03896-6